第52回技能五輪全国大会「機械製図」職種 競技課題概要

1. 課題内容

第1,第2課題はともに競技開始直前まで非公表である.参考のため,第51回**大会の競技課題**を以下に掲載する.

1.1 第1課題

競技開始直前に下記の課題文とともに、5ページに示すような組立図面が配布され、その中の指定された部品の製作図を持参した CAD システムにより作成し、その図面データを紙媒体で出力するとともに電子データを提出する.

《参考:前回の第1課題》

第51回 技能五輪全国大会機械製図職種 第1課題

課題図は、ある産業機械で使用されている混合弁を尺度1:1で描いた組立図である。

この混合弁は、ポートAとポートBから流体が入り、混合されてポートCから流出する。

次の注意事項及び仕様に従って、課題図に示す照合番号①「本体」の図形を描き、寸法、寸法の許容限界、幾何公差、表面性状に関する指示事項を記入し、部品図として作成しなさい。

1 競技時間:3時間

競技時間および休憩時間は下表による。

競技	休憩	競技
90分	(10分)	90分

2 注意事項

- (1) 競技委員の指示があるまで CAD機器等には、触れないこと。
- (2) 使用工具等は、技能五輪全国大会「機械製図職種持参工具一覧表」で指定した もの以外は使用しないこと。
- (3) 競技中は、工具等の貸し借りを禁止する。
- (4) 競技中は、携帯電話の電源を切ること。
- (5) CADにより作成中の部品図は、安全のために適時ハードディスクや、貸与されたUSBメモリに保存してもかまわない。また、確認のために随時印刷してもよいが、その際は黙って手を上げ、競技委員の指示に従うこと。
- (6) CADにより作成した部品図は、競技委員の指示に従って、1枚出力して提出 すること。なお、出力に要する時間は競技時間に含まれない。
- (7) CADにより作成した部品図のデータは、競技時間内に貸与されたUSBメモリにDWG形式、DXF形式またはIDW形式で保存し、競技終了後に提出すること。

(8) 部品図のデータの保存ファイル名は「××-kadai 5 1.○○○」とし、××は受付番号、○○○はdwg、dxfまたはidwとする。

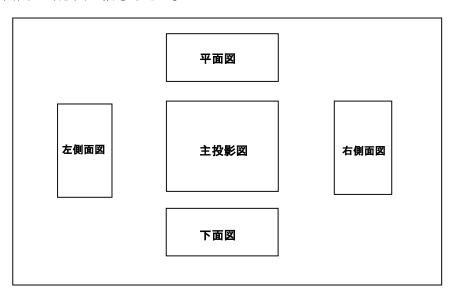
3 仕 様

3.1 部品図作成要領

(1) 部品図は、下記の日本工業規格(JIS) および課題に示す規格によること。

B0001 :2010	機械製図
B0002-1:1998	製図-ねじ及びねじ部品-第1部
B0002-2:1998	製図-ねじ及びねじ部品-第2部
B0002-3:1998	製図-ねじ及びねじ部品-第3部
В0021 :1998	GPS-幾何公差表示方式
В0031 :2003	GPS-表面性状の図示方法
B0401-1:1998	寸法公差及びはめあいの方式-第1部
B0401-2:1998	寸法公差及びはめあいの方式-第2部
Z8318 :2013	製品の技術文書情報(TPD)-長さ寸法及び角度寸法の許容限
界の指示方法	

- (2) 解答用紙はA1の大きさとし、四周をそれぞれ20 mmあけて輪郭線を引き、四辺に中心マークを設けること。
- (3) 解答用紙は、長辺を左右方向に置いて使用すること。
- (4)課題図の右下隅に記載されているとおり、受付番号、部品名称、材質、投影法、尺度、普通公差の欄を設け、それぞれの所要事項を記入すること。
- (5)課題図に表れていない部分は、他から類推して描くこと。また課題図に不合理な箇所があるときには、適宜合理的に修正して描くこと。
- (6) 断面の切り口を表すハッチングは、施す必要がない。
- (7) 寸法の許容限界は「公差域クラスの記号(寸法公差記号)」、「寸法許容差」または、「許容限界寸法」のいずれかによって記入すること。
- (8) 普通公差は、鋳造に関してはJIS B 0403の鋳造公差等級CT8、機械加工に関しては普通 寸法公差はJIS B 0405の中級m、普通幾何公差はJIS B 0419の公差等級Kとすること。
- (9) 鋳肌面の角隅の丸みは、半径 3 mmのものを「鋳造部の指示のない角隅の丸みは R 3 とする」と一括指示すること。
- (10) ねじは省略せずに図示すること。なお、ねじ呼び径は「M4」、「M8」、「M16」、「M30」のいずれかとすること。
- (11) 表面性状に関する指示事項は、表面性状パラメータ記号とその値によって表すこと。
- (12) 表面性状 (機械加工面) の指示値は、Ra 1.6、Ra 3.2、Ra 12.5の値とする。
- (13) 表面性状に関する指示事項は、図形に記入し、簡略法等で一括指示してもよい。
- (14) 角隅の丸み及び角の45°の面取りについては、表面性状の図示はしなくてもよい。
- (15)対称図形でも指示のない場合は、中心線から半分だけを描いたり、破断線などに


より図を省略しないこと。

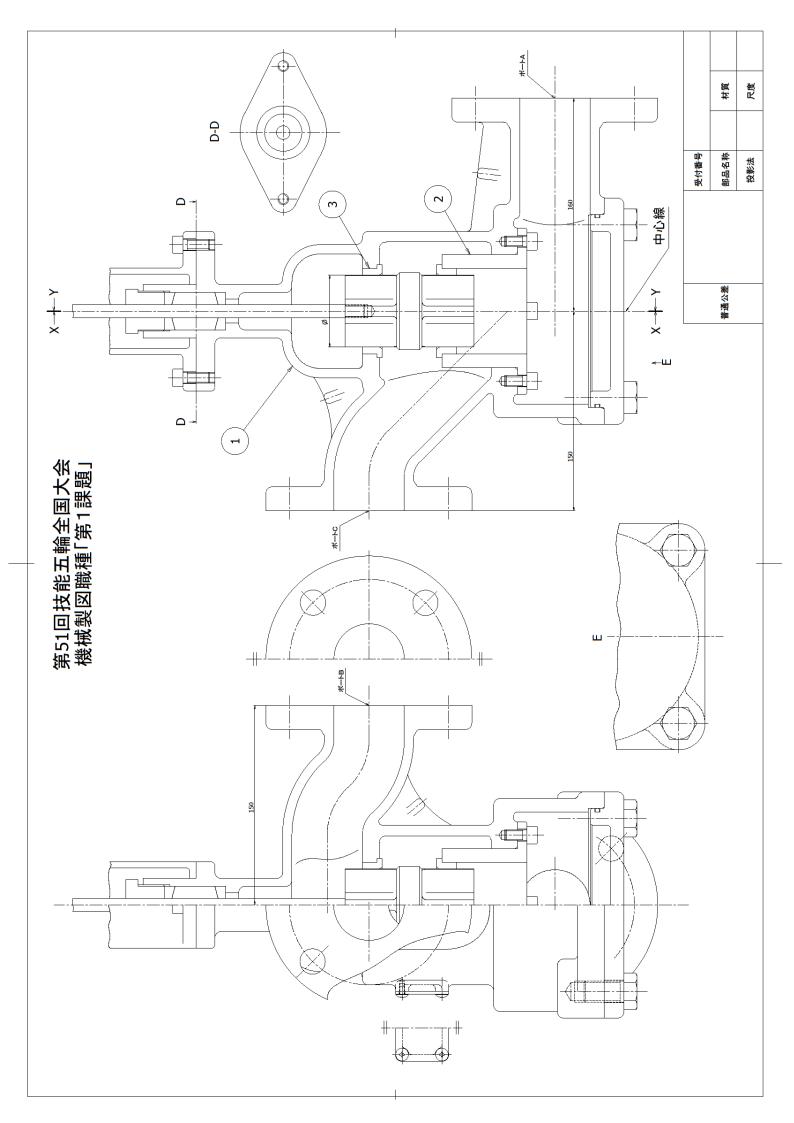
3. 2 指示事項

- (1) 部品図は第三角法で描き、尺度を1:2とすること。
- (2) 課題図に示すポートA、ポートCを、中心線を軸として、それぞれ180°回転した位置に設計変更すること。
- (3) 部品名称および材質は、下表のとおりとし、材質は材料記号で表記すること。

部品名称	材質	
本 体	ねずみ鋳鉄品・引張強さ250N/mm² 以上	FC250

- (4) 本体を次により描くこと。
 - ア. 課題図は右図が主投影図、左図が左側面図である。課題図と同じ主投影図と、右側面図、左側面図、平面図、下面図を描きなさい。なお、形状を明確に表すための局部投影図は描いてもよい。
 - イ. 主投影図は、課題図に準じた断面図として描きなさい。
 - ウ. 右側面図は中心線から右側を外形図、中心線から左側を課題図に示すY-Yの断面図として描きなさい。
 - エ. 左側面図は中心線から右側を外形図、中心線から左側を課題図に示すX-Xの断面図として描きなさい。
 - オ. 平面図及び下面図は外形図で描きなさい。

(5) 寸法記入について


ア. 課題図に記入されている寸法の公差は、上の寸法許容差が 0.15、下の寸法許容差が 0.15 とすること。

(6) 幾何公差について

下記のそれぞれの文章を明示する幾何公差を図中に指示すること。

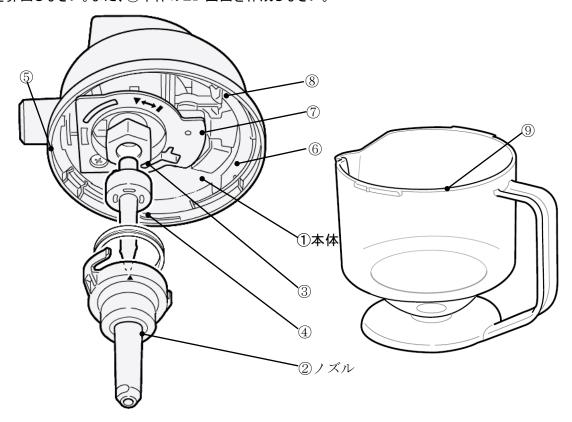
ア. 課題図に示す照合番号②「弁座受け」の入る穴の軸線は、照合番号②の取付面をデータムとして、データム平面に垂直な直径 0.1mm 円筒の中になければならない。

イ.	課題図に示す照合番号②「弁座受け」の入る穴の軸線をデータムとして、照合番号③	「弁
座」	の入る穴の同軸度は直径 0.05 の中になければならない。	
		以上

1.2 第2課題

1.2 第2課題

下の【写真】に示す実物モデルが与えられ、この寸法形状を測定具によって測定しながらスケッチし、 それを 3D-CAD システムによって 3 次元モデルで表現するとともに、2 次元の製作図面を作成する.



【写真】前回大会の実物モデル

《参考:前回の第2課題》

第 51 回 技能五輪全国大会機械製図職種 第2課題

課題(実物モデル)は、ある調理器具である。この品物を構成している主な部品は下の図に示す9点と裏側にある⑩調整つまみの計10点である。これら10点のうち、①本体、及び②ノズルのソリッドモデルを作成し、部品ごとの体積を算出しなさい。また、①本体の2D図面を作成しなさい。

1. 競技時間: 3時間

競技時間および休憩時間は下表による。なお、実物モデルは回収しない。

競技	休憩	競技	
90分	(10分)	90分	

2. 注意事項

- (1) 競技委員の指示があるまで、CAD機器等には触れないこと。
- (2) 測定工具等は、技能五輪全国大会「機械製図職種持参工具一覧表」で指定したもの以外は、使用しないこと。
- (3) 競技中は、工具等の貸し借りを禁止する。
- (4) 競技中は、携帯電話の電源を切ること。
- (5) CADにより作成中の解答図は、安全のために適時ハードディスクに保存したり、 貸与された USB メモリに 保存してもかまわない。また、確認のために随時印刷してもよいが、その際は黙って手を上げ、競技委員の

指示に従うこと。

- (6) CADにより作成した解答図などは競技時間内に USB メモリに保存し、競技終了後に提出すること。
- (7) 競技終了後、解答図などは競技委員の指示にしたがって印刷すること。 なお、印刷に要する時間は競技時間に含まれない。

3. 部品図作成要領

3.1 実物モデルの測定・スケッチ

- (1) 「材料を示す略語」、「三角マーク」などは測定しなくてよい。
- (2) おねじは外径の実測値をねじの実体とすること。
- (3) 抜きこう配が付いている箇所も、実寸どおりに測定すること。
- (4) 競技開始とともに CAD をモデリング、その他に使用してもかまわない。

3. 2 ソリッドモデル

- (1) 「材料を示す略語」、「三角マーク」などはモデリングしなくてよい。
- (2) おねじは外径の実測値をねじの実体とし、ねじ溝はモデリングしないこと。
- (3) ソリッドモデルの電子データを USB メモリに保存しなさい。ただし、色は自由であり、輪郭線、表題欄は必要ない。保存ファイル名は、4.提出物 の表に示すとおりとする。
- (4) 最も特徴を表す任意の1方向から見た外観図のモニタ画像を1枚作成し、JPEG 形式で USB メモリに保存しなさい。保存ファイル名は、4.提出物 の表に示すとおりとする。
- (5) 「ソリッドモデルの体積(mm³)」を求め、その数値が表示されたモニタ画像を各部品1枚、JPEG 形式で USB メモリに保存しなさい。保存ファイル名は、4.提出物 の表に示すとおりとする。

3.3 2D 図面

(1) 2D 図面は、下記の日本工業規格(JIS)によること。

B0001 : 2010 機械製図

B O O O 2 - 1 : 1998 製図-ねじ及びねじ部品-第1部 B O O O 2 - 2 : 1998 製図-ねじ及びねじ部品-第2部

B0002-3:1998 製図-ねじ及びねじ部品-第3部

B O O 2 1 : 1998 G P S -幾何公差表示方式

B0031 : 2003 GPS-表面性状の図示方法

B O 4 O 1 - 1:1998 寸法公差及びはめあいの方式-第1部 B O 4 O 1 - 2:1998 寸法公差及びはめあいの方式-第2部

Z8318 : 2013 製品の技術文書情報 (TPD) - 長さ寸法及び

角度寸法の許容限界の指示方法

- (2) 解答用紙は A1 の大きさとし、四周をそれぞれ 20mm あけて輪郭線を引き、四辺に中心マークを設けること。
- (3) 解答用紙は、長辺を左右方向に置いて使用すること。
- (4) 解答図の尺度は2:1とすること。

(5) 解答図の右下隅に下表の寸法を測定して描き、投影法、尺度、及び受付番号を記入すること。

投影法	尺度	受付 番号	XX
-----	----	-------	----

- (6) 図面は第三角法で描き、ソリッドモデルを完全に表現できるだけの必要十分な投影図を描くこと。そのための断面図や補助投影図などを含む投影図の数および方向は任意とする。
- (7) 製図は、R部については、接線エッジを用いること。
- (8) ソリッドモデルを表現するために必要十分な寸法を記入すること。
- (9) 寸法はソリッドモデル作成時の数値を書き、寸法公差等は必要ない。
- (10) 表面性状および幾何公差は記入しなくてよい。
- (11) 完成した2D 図面を DWG 形式、 DXF 形式または IDW 形式で USB メモリに保存しなさい。 データの保存ファイル名は、4.提出物 の表に示すとおりとする。

4. 提出物

提出物は下表のとおり。

		名 称	対応する	対応する USB メモリへの保存	
		10 70	部品名	ファイル名	用紙サイズ:枚数
	1	電子データ	①本体	XX-hontai.	
			②ノズル	XX-nozzle.OOO	
ソリッド	2	外観図の	①本体	XX-print_hontai.jpg	A3: 1枚
モデル		モニタ画像	②ノズル XX-print_nozzle.jpg		A3: 1枚
	3	体積(mm³)	①本体	XX-massprop_hontai.jpg	A3: 1枚
			②ノズル	XX-massprop_nozzle.jpg	A3: 1枚
2D 図面	4	2D 図面	①本体	XX-2d_hontai. $\Delta\Delta\Delta$	A1: 1枚

表中でXX は受付番号、OOOは拡張子、△△△は dwg、dxf または idw とする。

以上

2. 競技日程(予定)

2014年 11月 28日 (金) 下見、受付(競技会場)

8:30~8:40 受付

8:40~12:00 選手自己紹介,座席抽選,持参パソコンの設定,テスト印刷.

*テスト印刷では、各選手が持参したサンプル図面を用いてプリンタの印刷設定を行う、選手一人当りの持ち時間は約10分(付き添いが補助してもよい)

*印刷に使用した「印刷設定ファイル」を貸与された USB メモリに保存する

*USBメモリを返却し、解散

11月 29日 (土) 競技 (第1課題)

9:00~9:10 選手集合, CAD ソフトの立ち上げ

9:10~9:40 課題説明

9:40~12:50 第1課題(競技時間:3時間)

(内訳) 9:40~11:10 競技(90分)

(11:10~11:20 休憩)

11:20~12:50 競技 (90分)

* 解答図をUSBメモリに保存し、USBメモリを返却する

12:50~ 昼食

* 昼食後印刷. 翌日の競技の準備, 解散

11月30日(日)競技(第2課題)

9:00~9:10 選手集合, CAD ソフトの立ち上げ

9:10~9:40 課題説明

9:40~13:20 第2課題 (競技時間: 3時間30分)

(内訳) 9:40~11:40 競技(120分)

(11:40~11:50 休憩)

11:50~13:20 競技(90分)

* 解答図をUSBメモリに保存し、USBメモリを返却

13:20~ 昼食

* 昼食後印刷. 後片付け, 解散

公 表

第52回技能五輪全国大会 機械製図職種 大会運営Q&A

大会運営に関する失格条項及び注意事項を Q&A の形式で以下に掲載するので、参考にしてほしい.

1. 失格条項

- (1) 解答図と電子データ (USB メモリ) が提出されない場合.
- (2) 競技中の不正行為や競技委員の指示に違反した場合.

2. 会場設備及びパソコン

Q1 競技会場は?

刈谷市体育館(刈谷市逢妻町 4-32) において、機械組立職種および工場電気設備職種との共同開催(下の 写真参照).

【写真】競技会場の内部

Q2 空調関係(温度や換気,暖房)の状況は?

空調設備は設置されている. 寒さ対策用のひざ掛け等を持参して構わない.

Q3 照明の明るさは?

机の高さで、約900ルックス以上が確保されている.

Q4 アウトレット (コンセント) は?

アース付き 3p・100V のアウトレット (コンセント) 4口(1.5kW) を設置予定.

Q5 選手エリアのレイアウトは?

1人あたり $2.4 \times 2.5 \,\mathrm{m}$ のスペースを確保する.

Q6 選手はどのような配置で並ぶのか?

座席は抽選で決めるが、その配置は未定.

Q7 机のサイズと台数は?

選手 1 人あたり長机 W1800×D900×H700 mm を 1 台, W1800×D600×H700 mm を 1 台の, 合計 2 台を設置予定. 肘掛なしの OA 椅子 1 台を設置.

Q8 停電時の対策は?

無停電電源装置(UPS)は設置しないので、データの消失が心配な選手は UPS を持参すること.

Q9 会場に設置される解答図印刷用のパソコンとプリンタの仕様を知りたい.

Autodesk Product Design Suite Ultimate 2015 (最新版) がインストールされた3台のデスクトップパソコンが設置される. ただし、本システムは選手のパソコンとは接続されない. プリンタの機種及び台数は選定中.

Q10 選手が準備するパソコンはデスクトップ型、ノート型のどちらか?

どちらでもよいが、停電や故障対策を怠らないこと.

Q11 持ち込んだパソコン類を事前に設定したい.

パソコン類の設定は、11月28日(金)8:40~12:00の時間帯で行うこと.

Q12 故障を考えて予備パソコンを持参したい.

予備パソコンを持参してもよいが、故障等による競技途中の交換は選手本人が行い、交換に要する時間はロスタイムに含めない.

Q13 予備のパソコンを選手の競技エリア内で電源ONの状態で待機させておきたい.

かまわないが、予備パソコンを切り替えスイッチ等でディスプレイに接続することは禁止する.

Q14 パソコン類の盗難対策は?

パソコン類の盗難については保証できない. パソコン及び持参工具は、いったん設置したら、大会終了まで外部に持ち出すことはできないので、セキュリティワイヤーロックなどで予防しておくこと.

Q15 持参できるモニターの仕様は?

1台のパソコンには1台のディスプレイに限るが、市販のモニターで机の上に載るものであれば、大きさや性能は問わない。

Q16 会場に準備されているプリンタに持参したパソコンを直接接続して出力したい.

認めない.

Q17 プリンタを持参したい.

原則として、主催者側が準備したプリンタを使用すること. ただし、選手持参の CAD ソフトがそれに対応しない場合に限り、A1 タイプの印刷が可能であり、かつ、選手のスペース内に設置可能な機種であれば、選手一人に付き1台持参してもかまわない.1台のプリンタを複数の選手で共用することはできない.なお、電源容量の関係から、プリンタを持参する場合は事前に主催者に届け出ること.

Q18 プリンタ用紙は、何を使用するのか?

詳細は未定.

Q19 簡易製図機械(卓上ドラフター)を持ち込みたい.

認めない.

Q20 テスト印刷用のサンプル図面には何を持参すればよいのか?

出力の確認ができる図面(電子ファイル)なら何でもかまわないが、1分程度で印刷が完了する程度の図面であること.

Q21 11月28日(金)の時間内にテスト印刷が完了しない場合、引き続いて関係者による機器等の調整を行いたい。

特別処置として、同日午後の時間を使用して印刷設定を行ってもよい. ただし、その時間を使っても設定が完了しない場合はそのまま終了し、翌日の競技は選手個人が対処する.

3. CADソフト

Q 1 印刷用のCADソフトがAutodesk社製なのはなぜか?

技能五輪国際大会において、標準の設備であるため.

Q2 持参するパソコンのOSがWindows以外であるが参加できるのか?

印刷用プリンタを持参すれば参加できる(2.会場設備及びパソコン Q17参照).

Q3 「持参工具一覧表」で指定されたファイル形式以外のCADソフトでは参加できないのか?

印刷用プリンタを持参すれば参加できる(2.会場設備及びパソコン Q17参照).

Q4 使用するCADソフトがInventorと互換性がないため、Inventorをインストールしたもう1台のパソコンを持参して、不具合を修正したい.

2 台目のパソコンを持ち込んでもかまわないが、競技委員の立会いのもとで図面データの転送を行い、正常に転送できた後は1 台目の電源を切ること、2 台を同時に使用することはできない。

Q5 Inventorのバージョンが会場に設置されるバージョンと異なるが問題はないか?

印刷用パソコンにインストールされている Autodesk Product Design Suite Ultimate 2015 は、基本的に旧バージョンを読み書きできることになっているが、保証はできない. Autodesk 社から体験版を無償で提供してくれるので、HPで確認すること.

Q6 図面印刷用のパソコンにはUSBメモリ以外のメディアは使用できるのか?

解答図は、主催者から貸与された USB メモリに保存してプリンタに出力するので、他のメディアは認めない、選手が持参するパソコンには USB 端子が付いていること.

<u>Q7 会場に準備される図面印刷用パソコンに、持参するCADソフトをインストールして印刷したい.</u>

認めない.

Q8 2D-CAD及び3D-CADソフトは何でもよいのか?

「持参工具一覧表」で指定されたファイル形式で読み込み可能であれば何でもよいが、3D-CAD ソフトについてはソリッドモデルが作成できること.

Q9 持参するCADソフトに、記号等を事前に登録しておいてよいか?

登録しておいてよい.

Q10 テスト印刷以外で文字化け等を確認できる機会はあるのか?

ない。

Q11 持参するCADソフトで使用するフォントの設定は?

AutoCAD DWG ファイルを印刷する場合、印刷設定ファイルには極力、特殊な線種・フォントを用いないこと. DXFファイルについては、正常に出力できるようなフォントを選択しておくこと.

Q12 印刷設定ファイルを保存したい.

印刷設定ファイルは、テスト印刷の段階で、貸与した USB メモリに保存しておくこと.

Q13 持参工具一覧では「図面の印刷だけに用いるので、選手が使うソフトは読込み可能なファイル形式であれば よい」とある。3DデータはInventor形式に指定されているが、2DデータはDWGでもよいということであれば AutoCAD Mechanicalで作成しアウトプット(印刷)も同CADで行ってもよいのではないか? わざわざInventor 2Dにする必要はないのではないか?

3D 作成で Inventor を使用し、2D 変換で AutoCAD Mechanical を使用することは一向にかまわない.

Q14 CADの特性から、寸法公差表示で許容差が 0 の場合でも符号がついてしまうなどの不具合があるが、そのままにしておいてもよいか?

JIS に適合するよう修正すること.

4. 競技課題

4.1 第1課題,第2課題共通

Q 1 課題図及び課題文は非公表か?

競技開始直後に、見学者に公表する(当日公表).

Q2 競技は、1課題を1日ずつ、合計2日間で行われるのか?

その通り.

Q3 競技課題の内容は、前回と同様と考えてよいか?

前回とほぼ同様である.

- **Q4** 競技時間内に作品を提出しても、競技時間終了時に作品を提出しても減点や加点は無いと考えて良いか? その通り。
- Q5 解答図の図面サイズは?

第1課題,第2課題ともA1サイズである.

Q6 課題図に鉛筆やマーカーペンで書き込んで良いのか?

自由に記入して良い.

Q7 第1課題·第2課題ともにハッチングは必要か?

断面図の切り口にハッチングを、施しても施さなくてもよい、

Q8 フィレット(R部)の一括表記をしてもよいか?

フィレットの丸みについて、それらの大部分が同じ寸法である個所については「指示のない角隅の丸みは R 〇 (〇は丸みの半径) とする」と、図中に注記して一括指示してもかまわない。

4.2 第1課題

Q1 課題図は第三角法で描かれた組立図が、紙で与えられるのか?

その通り.

Q2 課題図の寸法をスケールで測定するのか?

その通り.

Q3 3D-CADを使用してもよいか?

2D-CAD、3D-CAD のどちらを用いてもよいが、解答図は第三角法(2D)で描かれていること.

Q3 3D-CADで作図した場合、解答図のフィレットは接線エッジで表示してもよいか?

第1課題の解答図はすべて JIS に基づいて製図してください. したがって,フィレットがかかった二つの面の交わり部は"相貫線"で図示し,リブなどを表す線の端末は「JIS B 0001:2010 機械製図」の図 76 のように処理すること.

Q4 表面性状の一括指示は可能か?

表面性状の簡略図示方法 (「JIS B 0031:2003 製品の幾何特性仕様(GPS) – 表面性状の図示方法」の図 23, 図 24 または図 25) を用いて、除去加工以外の面も含めたすべての面に記入すること.

4.3 第2課題

Q1 第2課題は、どのような内容なのか?

与えられた実物モデルを、持参した測定具を使用して測定、スケッチする. スケッチを基にソリッドモデルを作成し、アセンブリ機能を用いて配置し、マスプロパティを計算する. さらに主要部品については、製作に必要な 2D 図面を描く.

Q2 課題の与え方は、どのようになるのか?

競技開始前に課題部品(実物モデル)を配布し、機能を説明する.

Q3 実物モデルは機械加工品なのか、鋳物部品または射出成形品なのか?

今回の課題は、アルミニウム合金の鋳造品である.

Q4 実物モデルは、どの程度の大きさを想定しているのか?

W150 ×D150 ×H150 mm 以下を考えている. これを超える場合は、課題文にサイズを記述する.

Q5 実物モデルは競技途中で回収するのか?

回収しない.

Q6 測定、スケッチの最中にCADを使用できるのか?

測定、スケッチの最中に CAD を立ち上げ、これをモデリングに使用してもかまわない.

Q7 実物モデルの測定誤差の許容範囲はどれくらいか? 機械加工面では? 鋳肌面では?

測定値は小数点以下2桁目を四捨五入した値を用いること. 例えば, 測定値が52.26 mm であれば, 図面入力の数値は52.3 mm となる.

Q8 外形の寸法は1桁でも可能だが、穴の位置は穴の中心位置を測定しているわけではなく、基準面から穴の下面の位置を測定しておりまた穴間の壁面同士も測定しているので、穴径との関係もあり1桁にまとめると誤差が大きく生じてしまう。

実物モデルの加工精度及び持参測定具の測定精度を考慮すると,小数点以下2桁目の数値は誤差が大きすぎて意味をもたない.そのため,測定値の小数点以下2桁目を四捨五入して小数点以下1桁の数値に丸め,

それを使用すること. ご質問の穴間隔についても同様である.

Q9 ねじ形状はどこまでモデリングするのか?

めねじ内径またはおねじ外径の測定値に基づく円筒または円錐面をねじの実体とし、ねじ山形状はモデリングしないこと. ただし、穴機能でねじを作成するとねじ部にねじのテクスチャが自動生成されてしまう場合があるが、これはそのまま表示しておいてかまわない.

Q10 解答図(2D図面)のねじの表記はどこまで表記すればよいのか?

ねじの 2D 表記は「JIS B 0002:1998 製図-ねじ及びねじ部品」に従って描くこと.

Q11 解答図(2D図面)のリブやアームなどは断面しない状態で製図するのか?

解答図はすべて「JIS B 0001:2010 機械製図」に従って描くこと.

Q12 2D図面の寸法記入はどこまで行えばよいのか?

「JIS B 0001:2010 機械製図」で言うところの寸法については、すべて記入すること.

Q13 モデルを 2D化したときの図面上のフィレットは、どのように表示するのか?

フィレットは、接線エッジで図示すること.二つの曲面が交わる部分の相貫線は図示しなくてよい.線種は CAD のデフォルト値を使用してよい.

Q14 選手に要求される各種の解答図はどのような目的に使用されるのか?

各解答図の使用目的と要求事項は,以下のとおり.

(1) ソリッドモデル外観図の JPG 画像

JPG 画像で提出されたソリッドモデルの分解組立図及び各部品図. これらの図はカラー印刷されるため、見栄えのする色と方向で保存すること.

(2) 2D 図面

第2課題はあくまでも、実物を測定・スケッチしてソリッドモデルを作成する競技である。ソリッドモデルには実物の形状と寸法に関するすべての情報が含まれており、本来は、これをディスプレイ上で採点することが望ましい。しかし、現状では 3D-CAD 上での採点は困難なため、同時に作成された 2D 図面を用いて採点する。

(3) ソリッドモデルの体積を表示した JPG 画像

JPG 画像上に記載されているマスプロパティの数値を、採点の対象とする. なお、数値は JPG 画像で保存すること. CAD ソフトが異なるためにマスプロパティの数値がわかりにくい場合は、あらかじめその場所を示す画面の一例を競技委員に提示すること.

Q15 履歴は見るのか?

確認のために閲覧することもあるが、採点対象にはしない.

Q16 Print Screenの画像データは、各自が使用するCADソフトの画像圧縮ファイル形式で作成してよいか? JPG など、Microsoft ペイントで見ることができるピクチャーファイルで保存できればよい.

Q17 USBメモリに保存するソリッドモデルの電子データの保存形式は、各選手が使用するCADソフトのファイル形式でよいのか?

かまわないが、できるだけ IGES、SAT、STEP で保存すること.

Q18 第2課題の実物モデルにケガキ線等を入れてもかまわないか?

かまわない.

Q19 実物モデルは競技終了後もらえるのか?

差し上げる.

5. 持参工具

Q1 使用するパソコン類や測定具等を宅配便などで搬入したいが、いつから可能か? また、あて先は? 後日、選手向けに大会事務局からアナウンスされる参加要領を参照のこと.

Q2 予備のパソコンや持参した測定具を保管しておく倉庫はあるのか?

競技エリア内に持参工具置場を用意している. 重いものを運ぶための台車があると便利だと思われる.

Q3 機器類は下見受付の際に持参してもよいか?

直接持参するのはかまわないが、同日の集合時刻に間に合うこと(時間厳守).

Q4 「持参工具」で指定された測定具以外を持参してはいけないか?

指定された測定具のみを使用して,工夫して測定すること.

Q5 工具を載せる台などを持参してもよいか?

持参してよい.

Q6 ノギス 150 mm程度とあるが、それより大きくもかまわないか?

かまわない.

Q7 第1課題で使用する持参品(製図用具類)を第2課題の測定具として使用してもよいか?

使用してかまわない.

Q8 測定具の先端を加工して使用してもよいか?

測定具を改造して使用してはならない.

Q9 円弧ゲージ、ピッチゲージのサイズはどの位が必要か?

ゲージ類,工具類は市販品でよい.

Q10 ドライバ, 六角レンチは何に使うのか?

実物モデルを分解組立するために用いる.選手にその構造を理解してもらい、分解された部品をスケッチに利用してもらうためである.分解にてこずるようであれば競技委員等が手伝う.選手全員が分解し終わるまでは、競技は開始しない.

6. 競技中

Q 1 競技時間と休憩時間の配分は?

休憩時間は、「VDT 作業における労働衛生管理のためのガイドラインについて(基発第 0405001 号、平成 14 年 4 月 5 日)」に基づく処置と、トイレ休憩のために設けている.

Q2 休憩時間に選手は自由に行動できるのか?

トイレ休憩以外は、自席で休憩すること.

Q3 昼食は、競技会場で摂るのか?

昼食は競技会場と別のフロア、または屋外で摂っていただく予定.

Q4 競技時間が延長されることはないのか?

競技の進捗状況により、第1、第2課題とも延長はあり得る.

Q5 競技中にトラブルが発生した場合、付き添いの手助けはできるのか?

できない、選手対応である.

Q6 競技中、検図のために紙への印刷は何度でも可能なのか?

可能だが、順番待ちで並ぶこともあり得る.

7. 解答図の印刷

Q1 図面の出力方法を知りたい.

各選手は、解答図を保存した USB メモリを会場に設置されたデスクトップパソコンに差し込み、それと接続されたプリンタで印刷する.

Q2 出力する図面はカラーでもよいのか?

用紙に出力された図面は白黒(モノクロ)に限る.

Q3 解答用紙はA1の大きさで,四周をそれぞれ20 mmあけて輪郭線を引くことになっているが,プリンタとの関係 でどうしてもずれて20 mmとれない場合もあることが予想されるが,どのくらいの誤差まで許されるのか?

プリンタの機種の特性に依存する場合は不問とする.

Q4 データには出力されない線もあるが、残しておいてよいのか?

残っていてもよい.

Q5 選手はどのような順番で印刷するのか?

順番に印刷していただく、時間内に印刷できない場合は席次の最後に回って、再印刷することができる。

Q6 プリンタを持参した選手は、どのような順番で印刷するのか?

他の選手全員の終了時刻までに印刷が終了していればよい.

Q7 解答図の印刷中に文字化け等の不具合があったとき、図面を修正できるか?

印刷のやり直しは、プリンタの尺度のミス、図面のズレ、カスレなど、印刷にかかわる調整のみとする. なお、異なった CAD システムを使用した際の線種の変換程度の軽微の修正は、印刷中でも認める.

8. 採点 作品展示

Q 1 第1課題と第2課題の配点および採点方法はどうなっているのか?

配点, 採点基準は公表しているので、それを参照のこと.

Q2 採点は印刷した図面で行うのか、USBメモリの扱いはどうなるのか?

採点は出力された図面で行う、採点時に USB メモリのデータを参照することがある.

Q3 過去の優秀作品で、課題説明文にはない指示(投影法や尺度)が書かれている例があったが、とくに減点に

<u>はならないのか?</u>

課題説明文に書かれた要求事項だけが採点対象となる.それ以外が書かれてあった場合は,それが JIS に準じて正しければ不問であるが,誤っていれば減点される.

Q4 1位作品の取扱いはどうなるのか?

大会終了後,中央職業能力開発協会のホームページで公開する.

以上

第52回技能五輪全国大会「機械製図職種」持参工具一覧表

1. 解答図等の印刷に使用する CAD ソフトウェア

解答図等は原則として、貸与した USB メモリーを介して、会場に設置されたプリンタで印刷する. 印刷に使用する CAD ソフトウエアは

Autodesk Product Design Suite Ultimate 2015 である. 同ソフトウエアには

- · Autodesk Inventor 2015
- · AutoCAD Mechanical 2015

が同梱されている. これらの CAD ソフトは 3 台のパソコンにインストールされており、それらは出力用プリンタ 1 台に LAN 接続されている.

なお、上記ソフトで読み込み/書き出し可能なファイル形式は下表のとおり、持参する CAD ソフトが、同表の「読み込み」可能なファイル形式のどれかに該当していること。

ソフトウエア	読み込み	書き出し
Autodesk	IDW	I DW
Inventor Professional 2015	DWG	DWG
AutoCAD	2013 形式 DWG	2013 形式 DWG
Mechanical	2010 形式 DWG	2010 形式 DWG
2015	2007 形式 DWG	2007 形式 DWG
	2004 形式 DWG	2004 形式 DWG
	2000 形式 DWG	2000 形式 DWG
	R14 形式 DWG R13 形式 DWG R12 形式 DWG	_
	2010 形式 DXF 2007 形式 DXF 2004 形式 DXF 2000 形式 DXF R14 形式 DXF	2010 形式 DXF 2007 形式 DXF 2004 形式 DXF 2000 形式 DXF
	R13 形式 DXF R12 形式 DXF	R12 形式 DXF

(免責) 各参加選手が持参した CAD ソフトが上記仕様を満足していても、印刷時に文字化け等の不具合が発生する可能性がある。それについて主催者は一切責任を負わないので、正常に出力できることを事前に確認しておくこと。

2. 持参してよい用具類

パソコン一式(予備を含む)と、それに付随する無停電電源装置(UPS)以外に持参してよい用具類は、表1のとおり.

表1 パソコン以外に持参してよい用具類

区分	品 名	寸法または規格	数量	備考
	鉛筆		適宜	シャープペンシル可
	色鉛筆		適宜	ボールペンまたはマーカーペン可
	消しゴム		適宜	電動消しゴム可
	コンパス		適宜	スプリングコンパスを含む
	ディバイダ		適宜	
	三角定規		適宜	
第 1, 2 課	スケール		適宜	三角スケール可
題共通	テンプレート		適宜	テンプレート立ても含む
	分度器		適宜	
	ドラフティングシート		適宜	下敷き用. ケント紙も可
	掲示用ホルダ		適宜	課題文等の掲示用
	蛍光灯スタンド		1台	Z ライトでもよい
	卓上時計		1個	ストップウォッチ可
	関数付き電卓		1 台	プログラム電卓は不可
	スケール	鋼製, 150mm	1 本	(新規)
	汎用ノギス	測定長 150mm 程度	適宜	デジタル使用可
	穴ピッチ用オフセットノギス	150mm 程度	1個	デ ジ タ ル 使 用 可 (例 え ば , ミツトヨ NTD10P-15C). デプスマイクロ不可
	ダイヤルキャリパゲージ	測定長 10~30mm 程度	適宜	シリンダーゲージ, 穴測定用マイクロメータ を追加してもよい. デジタル可
	分度器	プロトラクタ	適宜	
第2課題	円弧ゲージ	市販品	適宜	
	ピッチゲージ	メートル系, インチ 系	適宜	ねじピッチ測定用
	ドライバ	+	適宜	精密ドライバ不可
	ウエス		適宜	ウエットティッシュも可
	脱脂液		適宜	OA クリーナーなど
	布手袋		適宜	
	スケッチ用紙		適宜	方眼紙, 斜眼紙でもよい

- 注1) 上記のうち、使用する必要がないと思われるものは持参しなくてよい.
- 注2) 選手が持参した用具類のうち、他の選手が不利となるものは競技委員が使用を禁止させる.
- 注3) 用具類の貸借は禁止する.

3. 競技に関する規定の詳細

別添の「競技課題概要」および「大会運営 Q&A」を参照のこと.

第52回技能五輪全国大会「機械製図」職種採点基準

1. 配点

採 ,	配点	
	作品採点	60点
第1課題	時間採点	0 点
	= 	60点
	作品採点	40点
第2課題	時間採点	0 点
	=	40点
合	100点	

2. 採点

第1課題,第2課題とも,提出された解答図を課題文および日本工業規格(JIS)に基づき採点する.採点は図形,寸法,寸法の許容限界,幾何公差及び表面性状等の未記入,誤りについて減点法で行う.第2課題は上記に加え,マスプロパティ(体積)と3D立体分解図についても採点する.

3. その他

採点方法の概要については、次のページ以降を参照のこと.

(参考資料)採点方法について

機械製図職種の競技課題,解答,採点基準などは,毎年,競技委員会で作成していますが,競技課題が競技開始まで非公開のため,課題や詳細な採点基準等は公開していません.しかし,他の職種では「技能競技大会を活用した人材育成の取り組みマニュアル」が作成され,その中で採点基準等が記載されるため,機械製図職種においても人材育成の一助を目的に採点について公表します.

今回,採点について公表する内容は,最近5年間の採点方法の要約であり,今年度の採点方法ではありません.今年度の採点方法については,今後競技委員会で作成しますが,競技課題が非公開のため中央職業能力開発協会から公開される採点基準以外の内容について公表いたしません.

1. 公表得点

大会終了後に中央職業能力開発協会から公表される得点は,基本的に第1課題得点と第2課題得点の合計です.

しかし、競技課題は毎年作成しますので、課題の難易度、採点箇所の数、競技時間等が一様ではなく、最高得点が毎年変化します。このため、最高得点の年間平準化を図る目的で、第1課題得点と第2課題得点の合計が90点以下の場合、最高得点が90点以上となるように平準化得点を全選手に与える場合もあります。

2. 第1課題と第2課題の配点

毎年,中央職業能力開発協会から「機械製図」職種採点基準として公開されます. 第52回大会の配点は第1課題=60点,第2課題=40点です.

2.1 第1課題

第1課題は大きく分けて図形と寸法の採点です. 配点は図形が 25%程度, 寸法が75%程度の配点です.

2.1.1 図形採点

図形採点は、図形の配点を課題で指示された正面図、側面図などの図毎にさらに配点し、減点法で図毎の得点を算出します。ただし、配点より減点が多い場合は 0 点とします (図形採点では正面図、側面図、断面図などの図以外に枠線や表題欄、図の配置等にも配点されます).

図の配点のウエイトは、図の複雑さや課題に表れていない図等が高くなります. 図での減点項目は、減点の大きい順に、指示どおり描いてない図、形状を表すの

に重要な線, 切断線・断面表示, その他の線・中心線です.

2.1.2 寸法採点

寸法採点は、寸法の配点を主要寸法、補助寸法、ねじ・キリ・ねじキリの位置寸法、RC寸法、表面性状、はめあい、幾何公差にさらに配点し、寸法の一つひとつについて記入もれ・誤りを減点法で算出します。ただし、配点より減点が多い場合は 0 点とします。

寸法数値は課題図数値(CAD 入力値)より尺度 1:1 で ± 2 mm 以内を許容範囲とします。ただし、 ± 2 mm より小さい寸法は許容範囲が小さくなり、また、課題図に示された寸法や課題文に示された寸法(ねじなど)は許容範囲がありません。

一つの寸法の減点は最近の大会平均で 1.2~0.2 点位です. 減点の大きいものは主要寸法です. (採点箇所数は多い年で 234 箇所, 少ない年で 128 箇所でした).

主要寸法(主要軸受穴と穴の距離や転がり軸受の入る穴径など)以外の補助寸法等は、他の寸法から計算して求められる値で判定します.

2.2 第2課題

第2課題は大きく分けてソリッドモデルの外観・体積と2D図面の採点です.配点はソリッドモデルの外観・体積が35%程度,2D図面が65%程度の配点です.さらに、2D図面の配点は図形と寸法に分けています.

2.2.1 ソリッドモデルの体積

ソリッドモデルの体積は実物値との差を $\pm 4\%$ 以内が減点0とし $\pm 10\%$ までを7段階に区分して減点しています.

2.2.2 2D 図面

2D図面の図形の採点は、描かれている図形が実物の形状を正確に表現されているかを採点するとともに、線の誤り、もれを減点法で採点します(線の種類に対するウエイトはありません).

2D図面の寸法の採点は、実物の一つ一つの寸法にについて記入もれ・誤りを減点法で算出します。ただし、横方向、縦方向、奥行方向等といった寸法項目毎の配点より減点が多い場合は0点とします。

一つの寸法の減点は最近の大会平均は 0.2 点位で、寸法の許容範囲は実物により異なりますが加工面で ± 0.3 mm 程度です(寸法に対するウエイトはありません.また、寸法は計算して求められる値でも判定します。最近 5 年間の採点箇所数は多い年で 117 箇所、少ない年で 82 箇所でした)。

*上記に対する質問は、受付けません.